Insulin and rosiglitazone regulation of lipolysis and lipogenesis in human adipose tissue in vitro.
نویسندگان
چکیده
Lipolysis is an important process determining fuel metabolism, and insulin regulates this process in adipose tissue. The aim of this study was to investigate the long-term effects of insulin, an insulin enhancer (rosiglitazone [RSG]), and insulin in combination with RSG on the regulation of lipolysis and lipogenesis in human abdominal subcutaneous fat. Lipolysis and lipogenesis were assessed by protein expression studies of hormone-sensitive lipase (HSL) (84 kDa) and lipoprotein lipase (LPL) (56 kDa), respectively. In addition, lipolytic rate was assessed by glycerol release assay and tumor necrosis factor (TNF)-alpha release measured by enzyme-linked immunosorbent assay (n = 12). In subcutaneous adipocytes, increasing insulin doses stimulated LPL expression, with maximal stimulation at 100 nmol/l insulin (control, 1.0 +/- 0.0 [mean +/- SE, protein expression relative to control]; 1 nmol/l insulin, 0.87 +/- 0.13; 100 nmol/l insulin, 1.68 +/- 0.19; P < 0.001). In contrast, insulin at the 100 nmol/l dose reduced the expression of HSL (100 nmol/l insulin, 0.49 +/- 0.05; P < 0.05), while no significant reduction was observed at other doses. Higher doses of insulin stimulated both HSL (1,000 nmol/l insulin, 1.4 +/- 0.07; P < 0.01) and LPL (control 1.00 +/- 0.0; 1,000 nmol/l insulin, 2.66 +/- 0.27; P < 0.01) protein expression. Cotreatment with RSG induced an increased dose response to insulin for LPL and HSL (P < 0.05); RSG alone also increased LPL and HSL expression (P < 0.05). Insulin stimulated TNF-alpha secretion in a dose-dependent manner (P < 0.01); the addition of RSG (10(-8) mol/l) reduced TNF-alpha secretion (P < 0.05). In summary, chronic treatment of human adipocytes with insulin stimulates lipolysis and LPL protein expression. The addition of RSG reduced the lipolytic rate and TNF-alpha secretion. The increase in lipolysis is not explained by changes in HSL expression. These data, therefore, may explain in part why hyperinsulinemia coexists with increased circulating nonesterified free fatty acids and increased adiposity in obese and/or type 2 diabetic patients.
منابع مشابه
Effect of cimaterol on sheep adipose tissue lipid metabolism.
Effects of dietary cimaterol (5 mg/kg) on adipose tissue metabolism of wether lambs were studied. Lipogenesis, lipolysis, fatty acid composition and adipocyte size and number were measured. Cimaterol feeding increased lipogenesis; however, this effect was not statistically significant. Insulin (1,000 microU/ml) stimulated lipogenesis of adipose tissue from control sheep. However, this elevated ...
متن کاملRegulation of Lipogenesis by Glucocorticoids and Insulin in Human Adipose Tissue
Patients with glucocorticoid (GC) excess, Cushing's syndrome, develop a classic phenotype characterized by central obesity and insulin resistance. GCs are known to increase the release of fatty acids from adipose, by stimulating lipolysis, however, the impact of GCs on the processes that regulate lipid accumulation has not been explored. Intracellular levels of active GC are dependent upon the ...
متن کاملRegulation of porcine adipocyte metabolism by insulin and adenosine.
The acute effects of insulin and adenosine on rates of lipolysis and lipogenesis in pig adipocytes were investigated to determine what limits the expression of the insulin response in vitro. Adenosine and insulin independently inhibited isoproterenol-stimulated lipolysis. Adenosine, acting through the pertussis toxin-sensitive G-protein Gi, was more effective than insulin and could completely i...
متن کاملMolecular adaptations of lipolysis to physical activity
The purpose of the present study was to investigate the context of lipid metabolism research in physical activity, lipolysis, lipolysis hormone regulation and the fate of lipolysis products in exercise, fatty acid transporters, some genes involved in lipid metabolism, effect of resistance activity on lipolysis, adaptations of adipose tissue due to physical activity, lipoproteins and apoproteins...
متن کاملFAS and ACC dysfunction in visceral Adipose Tissue
Background and Aim: A great interest for determining the particular mechanisms underlying lipogenesis and adipogenesis has been raised among researchers in order to fight obesity. We aimed to investigate the gene expression of FAS and its role in regulation of lipogenesis and adipogenesis in visceral adipose tissues from obese and normal-weight subjects. materials and Methods: A total of.parti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Diabetes
دوره 51 5 شماره
صفحات -
تاریخ انتشار 2002